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ABSTRACT 

Analytical solutions are presented for velocity and temperature 

distributions of laminar fully developed flow of Newtonian, 

constant property fluids in micro/minichannels for a wide 

variety of cross-sections. The considered geometries include 

hyper-elliptical channels and regular polygon ducts, which 

covers several common shapes. The analysis is carried out 

under the conditions of constant axial wall heat flux with 

uniform peripheral heat flux at a given cross section. The 

boundary conditions are applied using a linear least-squares 

point matching technique to minimize the residual between the 

actual and the modeled values on the boundary of the channel. 

Hydrodynamic and thermal characteristics of the flow are 

derived; these include pressure drop and local and average 

Nusselt numbers. The proposed results are successfully 

verified with existing analytical solutions from literature for a 

variety of channel cross-sections. The present study provides 

analytical-based compact solutions for velocity and 

temperature fields that are essential for basic designs, 

parametric studies, and optimization analyses required for 

many thermofluidic applications. 

NOMENCLATURE 

𝑎 = Hyperellipse major axis,  𝑚 

𝐴𝐶  = Cross-sectional area, 𝑚2 

𝑐𝑝  = Specific heat 

𝑏 = Hyperellipse minor axis,  𝑚 

𝐷𝑕  = Hydraulic diameter, 4𝐴/𝛤𝑐 , 𝑚 

𝑓 = Fanning friction factor 

𝑓𝑅𝑒 = Poiseuille number 

𝑘 = Conductivity 

𝑚 = Number of sides in regular polygonal ducts 

𝑁𝑢 = Nusselt number 

𝑛 = Exponent in hyperellipse formula 

𝑃 = Pressure, 𝑁/𝑚2  

𝑞" = Heat Flux, 𝑊/𝑚2 

𝑅𝑒 = Reynolds number 

𝑠 = Half the length of the sides in polygonal ducts, 𝑚 

𝑇 = Temperature, 𝐾 

𝑇∗ = Dimensionless temperature 

𝑢 = Axial velocity, 𝑚/𝑠 

𝑢∗ = Dimensionless velocity 

Greek symbols 

𝛼 = Diffusivity 

𝛤𝑐  = Perimeter, 𝑚 

𝜀 = Cross-sectional aspect ratio, 𝜀 = 𝑏/𝑎 

𝜂 = Non-dimensional coordinate, 𝜂 = 𝑟/𝑎 

𝜇 = Viscosity, 𝑁. 𝑠/𝑚2 

𝜌 = Density, 𝑘𝑔/𝑚3 

Subscript 

 𝐴 = Square root of cross-sectional area 

𝑤 = Wall 

𝑏 = Bulk 

INTRODUCTION 

Advances in micro fabrication technologies make it possible 

to make microchannels with various cross-sections in 

microfluidic devices. The convective flow and heat transfer in 

these channels, apart from their theoretical interest, are of 

considerable practical importance due to practical applications 

including the thermal management of electronic devices. The 
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developments in the microelectromechanical devices naturally 

require cooling systems that are equally small. Among the 

novel methods for thermal management of the high heat fluxes 

found in microelectronic devices, microchannels are the most 

effective at heat removal [1]. In addition, porous materials can 

be modeled as networks of microscale conduits; thus, transport 

properties of porous structures are closely related to the 

geometry of the considered microchannels. A proper 

understanding of fluid flow and heat transfer in these 

microscale systems is therefore essential for their design and 

operation. 

Different methods have been used in the literature to analyze 

the problem of fully developed laminar flow in non-circular 

channels, such as analogy method, complex variables method, 

conformal mapping method, finite difference method, and 

point matching method. The typical difficulty for obtaining an 

analytical solution for this problem by means of the well 

known classical techniques resides in the impossibility of the 

separation of variables. An additional difficulty is due to the 

non regular two-dimensional characteristic of the cross 

section. 

Sparrow and Haji-Sheikh [2] proposed a method of least 

squares matching of boundary values for fully developed 

laminar flow in ducts of arbitrary cross section. Tyagi [3] 

analyzed the steady laminar forced convection problem of heat 

transfer in fully developed flow of liquids through a certain 

class of channels including equilateral triangular and elliptic 

tube, using complex variables technique. Shah and London [4] 

surveyed the literature on analytical solution and alternate 

methods to study such transport phenomena and interpret the 

results for twenty five different geometries. Shah [5] presented 

a least squares matching technique to analyze fully developed 

laminar fluid flow and heat transfer in ducts of arbitrary cross 

section. Abdel-Wahed and Attia evaluated hydrodynamic and 

thermal characteristics of fully developed laminar flow in an 

arbitrarily shaped triangular duct using a finite difference 

technique [6]. Maia et al [7] solved heat transfer problem in 

thermally developing laminar flow of a non-Newtonian fluid 

in elliptical ducts by using the generalized integral transform 

technique. They transformed the axes algebraically from the 

Cartesian coordinate system to the elliptical coordinate system 

in order to avoid the irregular shape of the elliptical duct wall. 

However, this method cannot be used in more complex 

geometries for which transformation is not possible. 

Furthermore, none of the aforementioned studies presented 

closed form relations for the velocity and temperature 

distributions in such complex geometries. In fact, accurate 

information on the velocity and temperature fields are 

particularly important in devising efficient strategies in a host 

of engineering applications such as microfluidic, lab-on-chip 

devices, and fuel cell technologies, to name a few. An in-depth 

knowledge of velocity distribution plays a key role in 

determining other transport properties of microchannels such 

as heat and mass transfer coefficients.  As such, having a 

generalized solution for the velocity distribution in 

microchannels is of great value. Tamayol and Bahrami [9] 

approximated the velocity distribution of fully developed 

laminar flow in straight channels of regular polygon and 

hyperellipse cross-section, using the matching point technique. 

However, they did not solve the temperature problem. 

In this study, analytical solutions are presented for velocity 

and temperature distributions of laminar fully developed flow 

of Newtonian, constant property fluids in micro/minichannels 

in both hyperelliptical and polygonal mini/microchannels. The 

considered geometries include i) hyper-elliptical channels, 

encompassing concave/convex shapes from star-shaped, 

rhombic, elliptical , rectangular with round corners, and 

rectangular, and ii) regular polygon ducts, which covers 

several common shapes from equilateral triangular, squared, 

pentagonal, hexagonal, to circular. The proposed solution is 

presented in a single unique format that covers all the above-

mentioned cross-sections. 

In order to find the temperature distribution, the energy 

equation should be solved. Since there is a convective term in 

the energy equation, we have to find the velocity distribution 

by solving the momentum equation. In this paper, we first 

derive the governing equations and find a general solution for 

ducts with arbitrary cross sections. Then by applying the 

constant heat flux boundary condition we find the velocity and 

temperature distribution for polygonal and hyper-elliptical 

cross sections.  

GOVERNING EQUATIONS 

Momentum Equation 
The liquid flows in minichannels and microchannels in the 

absence of any wall surface effects, such as the electrokinetic 

or electroosmotic forces, is not expected to experience any 

fundamental changes from the continuum theory employed in 

macrofluidic applications [11]. Gad-el-Hak [12] argued that 

liquids such as water should be treated as continuous media 

with the results obtained from classical theory being 

applicable in channels larger than 1 μm. Thus, existing 

solutions for large scale ducts are also applicable to 

microchannels. In this paper, fully developed, laminar flow of 

constant properties and incompressible fluids is considered in 

microchannels with constant hyperelliptical and polygonal 

cross-section. Under these conditions, the momentum equation 

in cylindrical coordinates reduces to Poisson’s equation [13]: 
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where 𝜇 is the fluid viscosity. Due to geometrical symmetry, 

only a portion of the cross-section is considered in the 

analysis, as shown in Figs. 1 and 2.  

Applicable boundary conditions for hyper-elliptical channels 

are: 

 𝜕𝑢

𝜕𝜃
 
𝜃=

𝜋
2

= 0 ,    
𝜕𝑢

𝜕𝜃
 
𝜃=0

= 0 , 𝑢(𝑟0) = 0 
(2) 

 

The first two boundary conditions are obtained from the 

existing symmetry in the hyper-ellipse geometry, and the last 

one is the no slip condition on the wall.  

The boundary of a hyperellipse in the first quadrant is 

described by Eq. (3).  

𝑟𝑜 =
𝑎

  cos𝜃 𝑛 +  sin 𝜃 /𝜀 𝑛 1/𝑛
 ,   0 < 𝜀 =

𝑏

𝑎
≤ 1 

(3) 
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FIGURE 1. HYPERELLIPTICAL CROSS SECTIONS. 
 

 

where 𝜀 is the aspect ratio, 𝑎 and 𝑏 are the major and minor 

axes of the cross-section, respectively. 

Similarly, the boundary conditions for regular polygon cross-

section are: 

 𝜕𝑢

𝜕𝜃
 
𝜃=

𝜋
𝑚

= 0 ,    
𝜕𝑢

𝜕𝜃
 
𝜃=0

= 0,   𝑢(𝑟0) = 0 
(4) 

where the boundary for the specified domain in Figure 3 can 

be described by: 

𝑟𝑜 =
𝑠

tan⁡(
𝜋
𝑚)𝑐𝑜𝑠𝜃

 
(5) 

where 𝑚 is the number of sides of a regular polygon, and 𝑠 is 

one half of each side. 

 

 

   
𝑚 = 3 𝑚 = 4 𝑚 = 5 

 

FIGURE 2. REGULAR POLYGON. 

 

The general solution of the Poisson’s equation, Eq. (3), in the 

cylindrical coordinate is [14]: 

 

 

𝑢 = 𝐴1 + 𝐵 ln 𝑟 +
𝑟2

4𝜇
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 +   𝐶𝑘𝑟
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−𝑘  𝐸𝑘 cos𝑘𝜃 + 𝐹𝑘 sin 𝑘𝜃 

∞

𝑘=1

 

(6) 
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FIGURE 3. SOLUTION DOMAIN FOR REGULAR POLYGON 

AND ELLIPSE. 

 

 

The unknown coefficients, 𝐴1, 𝐵, 𝐶𝑘 , 𝐷𝑘 , 𝐸𝑘 , and 𝐹𝑘, should 

be calculated by applying the boundary conditions, Eq. (2) and 

Eq. (4).  For the solution to be applicable in a general form, 

the governing equations should be non-dimensionalized. The 

dimensionless velocity is defined as: 

 

𝑢∗ =
𝑢

−
1
𝜇  

𝑑𝑃
𝑑𝑧    𝐿𝑐

2
  (7) 

For a hyperellipse, 𝐿𝑐  is the major axis 𝑎 and for a 

polygon   𝐿𝑐 =
𝑠

sin
𝜋

𝑚

. For simplicity, This characteristic length 

is chosen so that the dimensionless radial component, 𝜂 =
𝑟

𝐿𝑐
, 

satisfy  0 ≤ 𝜂 ≤ 1. After applying the symmetry boundary 

conditions, the non-dimensionalized velocity reduces to: 

 

𝑢∗ = 𝐴1 −
1

4
𝜂2 +  𝐶𝑖𝜂

𝑚𝑖 cos𝑚𝑖𝜃

∞

𝑖=1

  
(8) 

where for hyperelliptic cross-section 𝑚 = 2 and for polygonal 

cross-section 𝑚 is the number of sides of the polygon. The 

difference between the two geometries arises from the location 

of the symmetry line. 

Applying no-slip boundary condition, the remaining unknown 

coefficients can be determined. Here a point matching 

technique is use to apply the boundary conditions. To 

approximate the solution to the velocity problem, Eq. (8), the 

infinite series can be truncated at a finite number of terms 𝑘. 

The 𝑘 points are selected on the periphery 𝛤, the boundary 

condition is satisfied exactly at these 𝑘 points to determine the 

𝑘 unknown coefficients of the truncated series. The velocity 

and temperature distributions are then obtained in a closed-

form series. The limitation of this method is that by increasing 

the number of points on the boundary, one cannot obtain a 

more accurate result since the degree of the polynomial is 

increased, which may result in overfitting. 

To overcome this problem, the least squares method is used. 

The least squares method differs from the point-matching 

method in that more than 𝑘 points along the boundary are 

employed to determine 𝑘 unknown coefficients in the 

truncated series. Therefore, we will have an over-determined 

linear system of equations. The coefficients are evaluated by 

minimizing the mean squared error of the boundary conditions 

at 𝑗 points (𝑗 > 𝑘).  

 

Energy Equation 
In addition to idealizations made for the momentum equation, 

for simplifying the energy equation, axial heat conduction, 

n = 0.5
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viscous dissipation, and thermal energy sources within the 

fluid are neglected. The applicable differential energy 

equation for laminar hydrodynamically and thermally 

developed flow is 
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(9) 

 

The associated thermal boundary condition is considered as 

axially constant heat transfer rate per unit channel length, with 

peripherally constant heat flux. For this boundary condition 

and fully developed flow, it can be shown that 

 
𝜕𝑇
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where 𝑢𝑚 , the mean velocity is defined as 

𝑢𝑚 =
 𝑢𝑑𝐴𝑐𝐴𝑐

𝐴𝑐
 

(11) 

 

Substituting Eq. (8) into (9) yields 
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or in the dimensionless form: 

 

𝜕2𝑇∗

𝜕𝜂2
+

1

𝜂

𝜕𝑇∗

𝜕𝜂
+

1

𝜂2

𝜕2𝑇∗

𝜕𝜃2
= 𝐴1 −

1

4
𝜂2 

                        + 𝐶𝑖𝜂
𝑚𝑖 cos𝑚𝑖𝜃

∞

𝑖=1

 

(13) 

where 𝑇∗ is defined as 

𝑇∗ =
𝑇

𝑞"𝛤𝑐𝐿𝑐2

𝑘𝐴𝑐𝑢𝑚
∗

 
(14) 

 

The solution of Eq. (13) is expressed as the sum of separate 

particular and homogeneous solutions as follows 

 

𝑇∗ = 𝑇𝑝
∗ + 𝑇𝑕

∗ (15) 

 

For a particular solution, it is easily verified by direct 

substitution that the following expression is a satisfactory 

particular solution [14]: 

 

𝑇𝑝
∗ = 𝐴1

𝜂2

4
−

𝜂4

64
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4(𝑚𝑖 + 1)
𝑖

𝐶𝑜𝑠𝑚𝑖𝜃 
(16) 

 

and the general homogeneous solution is 

 

𝑇𝑕
∗ = 𝑑0 +  𝜂𝑗 (𝑑𝑗𝐶𝑜𝑠𝑗𝜃 + 𝑒𝑗𝑆𝑖𝑛𝑗𝜃)

𝑗

 (17) 

The symmetry boundary conditions for the thermal problem in 

the domain shown in Figure 3 are determined by Eq. (18). 

 𝜕𝑇𝑕
∗

𝜕𝜃
 
𝜃=

𝜋
𝑚

= 0 ,    
𝜕𝑇𝑕

∗

𝜕𝜃
 
𝜃=0

= 0 
(18) 

Appling the symmetry boundary conditions, we obtain:𝑒𝑗 = 0 

and 𝑗 = 𝑚, 2𝑚, 3𝑚,… and we can rewrite Eq. (17) as follows: 

 

𝑇𝑕
∗ = 𝑑0 +  𝑑𝑗𝜂

𝑚𝑗𝐶𝑜𝑠𝑚𝑗𝜃

∞

𝑗=1

 
 

(19) 

Therefore, the temperature distribution can be found from Eq. 

(20). 
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(20) 

 

Applying the last boundary condition, constant heat flux per 

unit area, we should have the following constraint on the 

channel’s wall 

 𝜕𝑇
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where Γ𝑐
∗
, 𝐴𝑐

∗  are dimensionless perimeter and cross-sectional 

area defined by Γ𝑐
∗ = Γ𝑐/𝐿𝑐  and 𝐴𝑐

∗ = 𝐴𝑐/𝐿𝑐
2  . The 

dimensionless form for defining the outer boundary is 𝜂𝑜 =
𝑟𝑜

𝐿𝑐
  

and the normal gradient of temperature is:  

𝜕𝑇 

𝜕𝑛
= 𝑛 . ∇   𝑇 

(22) 

where 𝑛  is the normal vector of the boundary defined by 

𝐹 𝜂, 𝜃 = 0: 
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(23) 

 

  

Using a similar approach employed to solve the momentum 

equation, the infinite series in Eq. (20) is truncated. The 

coefficients 𝑑𝑖  are calculated by the least-squares point 

matching technique. By this technique, we could achieve a 

reasonable accuracy, with maximum error of 6%, using just 

one or two terms of the series. 

RESULTS  

The coefficient in Eqs. (8) and (20) are reported in tables 1 

and 2. Using just two terms of the infinite series in the 

solutions to the velocity and temperature distributions resulted 

in maximum error of 6% in applying the boundary value for 

the various geometries that were studied in this work. Table 3 

shows the closed form velocity and temperature relations for 

some examples from the studied geometries. 

 



 

 

TABLE 1. COEFFICIENTS IN EQS. (8) AND (20) FOR HYPERELLIPTICAL CHANNELS 

𝑛 = 40, rectangle 

 𝜀 = 0.2 𝜀 = 0.25 𝜀 = 0.4 𝜀 = 0.5 𝜀 = 0.6 𝜀 = 0.8 𝜀 = 1 

𝐴1 0.0198 0.0309 0.0768 0.1141 0.1533 0.2293 0.2948 

𝐶1 0.2600 0.2617 0.2401 0.2062 0.1649 0.0781 0.0000 

𝐶2 -0.0250 -0.0369 -0.0617 -0.0665 -0.0657 -0.0577 -0.0479 

𝑑1 -0.0068 -0.0083 -0.0084 -0.0078 -0.0069 -0.0040 0.000 

𝑑2 -0.0013 -0.0003 0.0000 0.0000 0.0000 0.0000 0.0028 

𝑛 = 4, rectangle with round corner 

 𝜀 = 0.2 𝜀 = 0.25 𝜀 = 0.4 𝜀 = 0.5 𝜀 = 0.6 𝜀 = 0.8 𝜀 = 1 

𝐴1 0.0199 0.0309 0.0755 0.1116 0.1495 0.2231 0.2867 

𝐶1 0.2508 0.2475 0.2192 0.1874 0.1499 0.0712 0.000 

𝐶2 -0.0188 -0.0259 -0.0413 -0.0454 -0.0459 -0.0415 -0.0347 

𝑑1 -0.0076 -0.0088 -0.0088 -0.0085 -0.0077 -0.0046 0.000 

𝑑2 -0.0009 0.0000 0.0000 0.0000 0.0000 0.0000 0.0028 

𝑛 = 2, ellipse 

 𝜀 = 0.2 𝜀 = 0.25 𝜀 = 0.4 𝜀 = 0.5 𝜀 = 0.6 𝜀 = 0.8 𝜀 = 1 

𝐴1 0.0192 0.0294 0.0690 0.1000 0.1324 0.1951 0.250 

𝐶1 0.2308 0.2206 0.1810 0.1500 0.1176 0.0549 0 

𝑑1 -0.0080 -0.0065 -0.0083 -0.0082 -0.0075 -0.0046 0 

𝑛 = 1, rhomboid 

 𝜀 = 0.2 𝜀 = 0.25 𝜀 = 0.4 𝜀 = 0.5 𝜀 = 0.6 𝜀 = 0.8 𝜀 = 1 

𝐴1 0.0151 0.0222 0.0470 0.0647 0.0824 0.1164 0.1474 

𝐶1 0.1980 0.1769 0.1161 0.0833 0.0578 0.0230 0.0000 

𝐶2 0.0421 0.0580 0.0979 0.1133 0.1196 0.1137 0.0963 

𝑑1 -0.0025 -0.0029 0.0000 0.0000 0.0000 0.0000 0.0000 

𝜀 = 1, star-shape 

 𝑛 = 0.9 𝑛 = 0.8 𝑛 = 0.7 𝑛 = 0.6 𝑛 = 0.5 𝑛 = 0.4 𝑛 = 0.3 

𝐴1 0.1282 0.1073 0.0853 0.0631 0.0424 0.0245 0.0115 

𝐶1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

𝐶2 0.1191 0.1476 0.1831 0.2267 0.2708 0.2778 0.2520 

𝑑1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 
 

TABLE 2. COEFFICIENTS IN EQ. (13) FOR POLYGONAL CHANNELS. 

 

𝑚 = 3 4 5 6 7 8 9 10 20 

𝐴1 0.0833 0.1473 0.1823 0.2024 0.2149 0.2231 0.2288 0.2328 0.2458 

𝐶1 -0.1667 -0.0909 -0.0558 -0.0374 -0.0267 -0.0199 -0.0154 -0.012 -0.0028 

𝐶2 0.0000 0.0103 0.0095 0.0075 0.0058 0.0046 0.0036 0.0030 0.0007 

𝑑1 0.0000 0.0000 0.0000 0.0000 0.0006 0.0004 0.0003 0.0002 0.0000 

 

 

 

 

 



 
 
 
 

TABLE 3. EXAMPLES OF DEVELOPED VELOCITY AND TEMPERATURE DISTRIBUTIONS 
 

cross-section aspect ratio velocity profile (𝑢∗) temperature profile (𝑇 = 𝑇∗ − 𝑇𝑏
∗) 

𝑛 = 0.5 
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Two important characteristics of convective flow in channels 

are the Poiseuille number and the Nusselt number. The 

Poiseuille number, f Re, is the common dimensionless number 

used for analyzing pressure drop in channels and is defined 

by: 

𝑓𝑅𝑒 = −
1

𝜇

𝑑𝑃

𝑑𝑥
×
𝐴𝑐

3/2

𝛤𝑐𝑢𝑚
 

(24) 

 

Here we have chosen the square root of area as a characteristic 

length scale, since it can catch up the trend of variation in 𝑓𝑅𝑒 

more consistently than the hydraulic diameter [9,10].  

 

 
FIGURE 4. POISEUILLE NUMBER IN POLYGONAL 

CHANNELS 

 
FIGURE 5. NUSSELT NEMBER IN POLYGONAL 

CHANNELS 

 

The Nusselt number, 𝑁𝑢 is the ratio of convective to 

conductive heat transfer normal to the boundary. The local 

Nusselt number is defined by 

 

𝑁𝑢 =
 𝐴

 𝑇𝑤 − 𝑇𝑏 
 𝜕𝑇

𝜕𝑛
 
𝑟=𝑟𝑜

 
(25) 

 

where 𝑇𝑤  is the wall temperature and  𝑇𝑏  is the fluid bulk 

temperature defined by Eq. (26). The average Nusselt number 

is defined by using the average wall temperature in Eq. (25). 

 

𝑇𝑏 =
 𝑢𝑇𝑑𝐴𝑐𝐴𝑐

 𝑢𝑑𝐴𝑐𝐴𝑐

 

(26) 

The results for the Poiseuille number and Nusselt number are 

plotted in Figures 4 and 5 for hyperelliptical channel and Figs. 

6 and 7 for polygonal channels and are compared with other 

analytical/numerical data [4,5]. 

 
FIGURE 6. POISEUILLE NUMBER IN CHANNELS OF 

HYPERELLIPTIC CROSS-SECTION. 
 

 

 
FIGURE 7. NUSSELT NEMBER IN CHANNELS OF 

HYPERELLIPTIC CROSS-SECTION. 
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In Figure 8, the local Nusselt number, calculated from Eq. 

(25), is plotted for channels with star-shape and square cross-

section.  

 

 
FIGURE 8. LOCAL NUSSELT NEMBER IN HYPERELLIPTIC 

CHANNELS, 𝜺 = 𝟏. 
 

 
SUMMARY AND CONCLUSIONS 
In the present work, analytical solutions are presented for 

laminar fully developed flow and heat transfer in 

micro/minichannels of arbitrary cross-sections. The point 

matching technique is used to apply the boundary condition 

and the least squares method is employed in order to minimize 

the error of the boundary values. Velocity and temperature 

distributions are obtained for various geometries, with 

different aspect ratios, from which hydrodynamic and thermal 

characteristics of the flow were calculated. Also, using this 

method, the local Nusselt numbers are determined. For star-

shaped channels, the local 𝑁𝑢 near the corners is close to zero, 

which is due to the fact that in these regions the velocity of the 

fluid is almost zero as a result of the high wall shear stress.  

 The geometries that were considered in this study, encompass 

a wide range of shapes, therefore, the present approach can be 

considered as a general solution. This model develops 

compact relations for the velocity and temperature 

distributions, estimates the pressure drop and the Nusselt 

number with a good accuracy and therefore provides tools for 

basic design, parametric studies, and optimization analyses 

required for microchannel heat exchangers and heat sinks. 
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